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1. Introduction 
 
 Laser-generated interpenetrating plasma jets are widely used in the studies of 
collisionless interaction of counter-streaming plasmas in conjunction with possible 
formation of collisionless shocks (e.g., Ref. 1). In a number of experiments of this type 
the plasma is formed on plastic targets made of CH or CD. As was recognized at the very 
beginning of these studies, the study of the DD neutron production from the interaction 
between two CD jets on the one hand and between a CD jet and a CH jet could serve as a 
qualitative indicator of the collisionless shock formation. This concept has been described 
in a series of internal memos of 2010-2011 and published in Ref. 1 (see the paragraph 
below Eq. (1) of that paper).   
 Although a lot of effort has been directed towards making the collisions between 
the inter-penetrating streams as week as possible, it turned out to be difficult to make 
them decisively negligible. Some level of collisions is always present and may contribute 
to the interaction between the streams. The purpose of this memo is a discussion of the 
effect of collisions on the neutron generation in the interpenetrating CH and CD jets. 
Ideally, if the collisions were entirely missing, and the collisionless shock was not 
formed, the jets should have freely penetrated through each other without producing any 
neutrons. If the collisions are present but weak, then the CD jet would be somewhat 
heated by the small-angle scattering on the carbon ions of the counter-propagating CH 
jet. However, the temperature of the CD jet would remain low and the neutron yield 
would have stayed negligible. The reason for this statement is that the Coulomb collisions 
are dominated by the small-angle scattering, so that the collision operator is “almost” a 
Fokker-Planck, diffusive operator.  This in turn means that for a weak collisions there 
will be no high-energy tails of the distribution function that actually contribute to the 
neutron yield. We remind that, as there are no deuterons in the counter-propagating 
stream, the intra-jet deuterium collisions would be the only source of the neutrons.  
 Here, however, another type of collisions, those associated with small impact 
parameters, may come into play. Usually they are neglected due to a small cross-section, 
but here they may instantaneously produce fusing deuterons. The interaction scenario, in 
a qualitative way, can be characterized as follows. Consider a nearly head-on collision of 
the deuteron of the CD stream with a carbon of the counter-propagating CH stream. The 
velocities of the particle in both streams are equal and directed oppositely. The common 
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value of the velocities is denoted below as V. Elementary momentum and energy 
conservation arguments show that the velocity of a deuteron after the reflection will be 
equal to 

 vD2 =
3mC −mD

mC +mD

V         (1) 

and will be directed along the CH flow. Here and below we use the subscript “2” to 
denote the parameters after collision. This deuteron then collides head-on with the 
incoming deuterons of the CD stream, so that the relative collision velocity is 

 vrel =
4mC

mC +mD

V= 24
7
V .       (2) 

Note that this velocity is significantly higher than the relative velocity of the counter-
propagating deuterons in the CD-CD case, which is 2V. This boosts the cross-section of 
neutron-generating collisions and partially compensates for the small value of the 
Rutherford cross-section for head-on collisions. 
 Below we will consider the corresponding effects in more detail. First, we discuss 
the kinematics of the large-deflection collisions of the deuterons and carbon. Then we 
relate the scattering angles with the corresponding Rutherford cross-section. After that we 
provide expression for the number of the backscattered deuterons and evaluate their 
contribution to the neutron yield. The results may be of some significance to the kinetic 
codes benchmarking and developing the neutron diagnostic. 
 To put this study in the context of the earlier works on the large-angle scattering, 
we mention the applications to mirror physics [2], as well as to the diagnostics of the 
alpha-particle population in a fusing MFE plasmas [3, 4, 5]. The knock-on collisions with 
the alphas are discussed also in the context of the inertial confinement [6] and 
development of the Monte-Carlo codes [7].  
 
2. Kinematics of the C-D collisions 
 
 In this section we relate the center-of-mass (COM) scattering angle of the D ion 
with its velocity after collision. Initially both ions are moving along the axis z, the carbon 
ion to the left, and the deuterium ion to the right. The velocity of the COM frame is equal 
to 

 u = mC −mD

mC +mD

V          (3) 

The deuteron initial velocity in the COM frame is directed to the left and is equal by the 
absolute value to  

 ʹvD1 = V+u =
2mC

mC +mD

V        (4)  

The subscripts “1” and “2” below correspond to the parameters before and after collision. 
The prime denotes quantities in the COM frame.  
 The picture of the deuteron scattering in the COM frame is illustrated by Fig. 1. In 
this frame the velocity vector of the scattered deuterons has the same absolute value as 
the initial velocity but is turned by some angle (see Ref. 8). We are interested in a large-
angle scattering that would correspond to small-to-modest values of χ . The small-angle 
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scattering (that does not contribute to the effects of interest for us would correspond to χ  
close to π . With this observations made, one obtains the following expression for the 
velocity components of the scattered deuteron in the COM frame: 

 

ʹvzD2 =
2mC

mC +mD

Vcosχ;

ʹv⊥D2 =
2mC

mC +mD

Vsinχ.
        (5) 

In the Lab frame the corresponding velocity components are 

 

vzD2 =
2mC

mC +mD

Vcosχ+u=mC (2cosχ +1)−mD

mC +mD

V;

v⊥D2 =
2mC

mC +mD

Vsinχ.
    (6) 

The absolute value of the relative velocity of the scattered deuteron and the incoming 
deuterons of the CD stream is: 

 vDrel = vzD2 +V( )2 + v⊥D22 = V 2 2mC

mC +mD

1+ cosχ     (7) 

 For the direct head-on collision with χ→ 0  this result coincides with Eq. (2). A 
scattering angle χ in the COM frame can be related to the angle ϑ  between the axis z 
and the velocity of the scattered deuteron in the laboratory frame: 

 tanϑ =
2 2 sin χ

2cosχ +1− (mD /mC )
      (8) 

We present this result for reference only; we will not use it in this report. 
 
3. Rutherford cross-section and the distribution function of scattered deuterons 
 
 The differential cross-section is evaluated, in particular, in Ref. 7, Eq. (19.3):  

 dσ = S dο
cos4(χ / 2)

,         (9) 

where   

 S =
Zce

2 mD +mC( )
4mDmCV

2

⎡

⎣
⎢

⎤

⎦
⎥

2

,       (10) 

and dο = 2π sin χdχ  is an element of the solid angle in the velocity space in the COM 
frame. Note that we consider collisions of the particles with initially the same velocity, so 
that the COM frame is the same for all colliding pairs of C and D.  
 From this point on, we will consider a simplified initial value problem, where the 
streams are uniform in space and are overimposed on each other at t=0. Then, the number 
of scattered deuterons per the solid angle,  F χ( ) , will grow linearly with time: 

 F χ( ) = 2VnDnCS
cos4(χ / 2)

t .        (11) 



 4 

The factor of 2 in the numerator appears due to the fact that, before the collision, the 
carbon and deuterium ions have a relative velocity of 2V. Here nD  and nC  are the 
densities of the carbon and deuterium ions per jet. Typically, in the experiments of the 
type [1] they are equal,  
 nD=nC=n.         (12) 
We will assess some of the effects of finite dimensions of the streams in Part 2 of this 
report.  
 
4. The neutron yield 
 
 The number of neutrons produced per unit volume per unit time in this system is 

 !Y = 2πnD σ n (vDrel )vDrelF(
0

π

∫ χ )sin χdχ ,     (13) 

where σn is a neutron production cross-section [9], vDrel is defined by Eq. (7), and the 
factor 2π sin χdχ comes from the definition of the solid angle.  
 The fusion reactivity strongly depends on the scattering angle: at small scattering 
angles, π − χ <<1, the relative velocity of the scattered deuterons and the main body of 
un-scattered deuterons is small, and the reactivity drops precipitously (Fig. 2). This 
allows one to use Eq. (13) for the evaluation of fusion yield related to large-angle 
scattering events, despite the presence of a formal divergence in F. In reality, these small-
angle scattering events with χ!π are described by the Landau collision integral and, in 
the case of rare collisions, cannot cause a strong heating of the interpenetrating streams 
during a limited time during which they overlap.  
 An expression for the cross-section for the neutron-generating branch of the DD 
reaction can be represented as [8]: 

 σ n (barn) =
19.35

vDrel
2 (Mm / s) exp 14.82

vDrel (Mm / s)
−1

⎡

⎣
⎢

⎤

⎦
⎥

.    (14) 

Collecting all the numerical factors in the Eq. (7) for vDrel , we find: 
       (15) 
The reactivity σ n (vDrel )vDrel  can then be presented as: 
  

 σ n vDrel( )vDrel =
79.8×10−17(cm3 / s)

V(Mm / s) 1+ cosχ( ) exp 6.12
V(Mm / s) 1+ cosχ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (16) 

Equation (16) leads to the plots of Fig. 2. 
 The factor S (Eq. (10)) of the dimension of cm2 can be presented numerically as: 

 S(cm2 ) = 1.457×10
−22

V(Mm / s)4
 .       (17) 

The distribution function F can be presented numerically as: 

 F(cm−3) =1.17×10−22 nD (cm
−3)nC (cm

−3)t(ns)
1+ cosχ( )2 V(Mm / s)[ ]3

.     (18) 

vDrel (Mm / s) = 2.42 1+ cosχV(Mm / s)
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Substituting Eqs. (16) and (18) into Eq. (13), one finds the following expression for the 
yield !Y : 

 
!Y (cm−3 / s) =10−39 n(cm−3)⎡⎣ ⎤⎦

3
t(ns)G V( )      (19) 

where we accounted for Eq.(12). The function G has a dimension of cm6/s2 and can be 
evaluated as follows: 

 

G(cm6 / s2 ) = 584
V(Mm / s)[ ]4

sin χdχ

1+ cosχ( )5/2 exp 6.12
V(Mm / s) 1+ cosχ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

π

∫ .  (20) 

Function G(V) is shown in Fig. 3. 
 
5. The neutron yield in the case of two CD streams 
 
 For two weakly-to-moderately collisional CD streams the neutrons are generated 
predominantly in the “beam-beam” collisions between the deuterons of the two streams. 
Estimates of the neutron yield based on this model provide a reasonable agreement with 
the experimental data (see Fig. 4). Of course, detailed quantitative comparisons have to 
use numerical simulations, the would account for the spatio-temporal evolution of the 
flow.  
 Our approach, however, is to evaluate the neutron yield in the initial-value 
problem for two uniform streams superimposed on each other at t=0, in other words, in 
the exactly the same setting as that used in sections 3 and 4. Then, finding the ratio of the 
two yields, we will eliminate a lot of uncertainties caused by the spatial scales of the 
interacting streams.  
 For two identical streams, each having velocity V, we have, instead of Eq. (15), 

 

σ n (vDrel )vDrel =
0.97×10−15(cm3 / s)

V(Mm / s) exp 7.4
V(Mm / s)

−1
⎡

⎣
⎢

⎤

⎦
⎥

     (21) 

The neutron yield per unit volume and unit time will then be 

 
!Y *(cm−3 / s) =10−18 n cm−3( )⎡

⎣
⎤
⎦
2
H (V) ,      (22) 

where the asterisk indicates a yield from the beam-beam collisions and H(V) is defined 
as: 

 H (cm3 / s) = 970

V (Mm / s) exp 7.4
V (Mm / s)

−1
⎡

⎣
⎢

⎤

⎦
⎥

.     (23) 

 
 6. Comparing the neutron yields 
  
 We can now get an idea of the relative role of the knock-on deuterons in the 
generation of the neutrons. Note that an accurate assessment of the problem would 
require accounting for the spatio-temporal characteristics of the colliding streams and the 
related spatio-temporal evolution of the distribution function of the knock-on deuterons. 
 We will discuss several aspects of this problem in the Part 2 of this report, but 
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here we will focus on the ratios of the two sources of the neutrons. This would make the 
comparison of the two sources much less sensitive to the aforementioned “form-factors”. 
So, based on Eqs. (19) and (22) we will find the ratio of Y to Y*. When making this 
comparison, one has to remember that the instantaneous yield  grows linearly with time 
since the moment when the streams have been superimposed.  So, the instantaneous yield 
Y grows as Y = !Yt / 2 ; the instantaneous yield !Y *  is constant, and Y*= !Y * t . This leads 
to the following result:  

 Y
Y *

= 5×10−22 t(ns)n(cm−3)Q V (Mm / s)[ ] ,     (24) 

where the function Q of the dimension cm3/s is   

 Q =
G
H

.         (25) 

The plot of the function Q is shown in Fig. 5. 
 Consider as a reference the case where the characteristic flow velocity is 
V=1Mm/s – a typical value for the experiments of the type [1]. For this V, the Q is 3.29, 
so that  

 

Y
Y *

=1.64×10−21t(ns)n(cm−3) .      (26) 

One sees that for the typical ion densities (2x1019 cm-3) and overlap durations (3 ns) the 
contribution to the yield from the large-angle scattering can be non-negligible and 
deserves a more careful analysis.  
 In Part 2 of this report possible experimental signatures of this process will be 
discussed. 
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Fig.1 Collision kinematics in the Center-Of-Mass frame. At the top the Lab frame is 
used; the carbon and deuterium ions are approaching each other with the same velocity 
V. At the bottom, the scattering of the deuterium ion in the Center-Of-Mass frame is  
shown; the scattering center in this frame is at rest; the deuterium ion velocity does not 
change, just turns by some angle χ.  Note the definition of χ: it is zero when the scattered 
ion is moving oppositely to the incoming one; for small angle scattering χ is close to π. 
 
 

 
 
 
Fig. 2 Reactivity for the knock-on deuterons. Red curve: V=1.5 Mm/s; green curve: V=1 
Mm/s; blue curve: V=0.75 Mm/s. 
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Fig. 3 Function G(V) 
 
 

 
 
Fig.4 Function H(V) 
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Fig. 5 Function Q(V) 
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